### **Rainwater as Potential Resource** For Water Independence in Tucson's Communities

### Assistant Professor,

Associate Professor, Geographical Sciences and Urban Planning, Arizona State University

photograph: southernarizonaguide.com John Edwards



### 26 February 2019 Making Action Possible

**Courtney Crosson** versity of Arizona ccrosson@email.arizona.edu

> **Daoqin Tong** daogin.tong@asu.edu

Over the next 20 years, the EPA estimates that Arizona's water delivery infrastructure will require an added investment of over

# 



### In 2016, Tucson residential water demand was over **Q 7** thousand acre-feet.

### Approximately a third is imported or **C** thousand acre-feet.



# In 2016, Tucson was supplied with over thousand acre-feet of rainfall.



# In 2016, Tucson was supplied with over thousand acre-feet of rainfall.

### of Tucson's annual water demand.

## In 2016, Tucson was supplied with over thousand acre-feet of rainfall.

## of Tucson's annual water demand.

### of Tucson's annual imported water.

### CONTEXT LIMITATION





## INFRASTRUCTURE LIMITATION: system components



Courtney Crosson

## INFRASTRUCTURE LIMITATION: system components



Courtney Crosson

### Given these limitations, does Tucson have the capacity to achieve

# WATER INDEPENDENCE

through its rainwater resources?

### METHOD



### Research Team: Courtney Crosson Daoqin Tong, PhD

Qing Zhong, PhD Student Yinan Zhang, PhD Student Funded by: Making Action Possible (MAP) and Pima Association of Governments (PAG)

### METHOD: data collected

| Data                                                                       | Description                                                                                                                                                                                                                                  | Data Source                                                                                              |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| LiDAR LAS (Log ASCII Standard) files                                       | Point clouds with x (longitude), y<br>(latitude), and z (elevation) coordinates<br>for 161 Tucson residential township<br>sections                                                                                                           | Pima Association of Governments<br>(PAG) LiDAR data accessed from the<br>University of Arizona Libraries |
| Parcel data                                                                | Parcel polygons shapefile, metadata,<br>and parcel use code descriptions                                                                                                                                                                     | Pima County GIS ftp server                                                                               |
| Socioeconomic data                                                         | Number of residents and workers by sex, number of households, poverty                                                                                                                                                                        | U.S. Census Bureau, 2011-2015 ACS 5-<br>Year Estimates                                                   |
| Remote sensing data                                                        | High Resolution Orthoimagery (HRO)<br>from PAG with a spatial resolution of 6<br>inches. The orthophoto was taken in<br>2015 between May and June, with 4<br>bands covering RGB and NIR. The<br>radiometric resolution is 8-bit<br>unsigned. | PAG orthophoto accessed from<br>University of Arizona Library                                            |
| Global Historical Climate Network Daily<br>(GHCN-Daily) Precipitation data | Daily rainfall gauge observation from<br>2007 to 2016 with the unit of inch in<br>the format of csv. A total of 200<br>stations' daily precipitation was<br>included.                                                                        | National Oceanic and Atmospheric<br>Administration (NOAA)                                                |
| Normalized Difference Vegetation<br>Index (NDVI) data                      | An indicator used to identify vegetated areas and their conditions                                                                                                                                                                           | PAG                                                                                                      |
| Tucson Rainwater Harvesting Rebate adoption sites                          | Point locations within the City that<br>have used Tucson Water's Rainwater<br>Harvesting Rebate program to install<br>active systems in the last four years                                                                                  | Tucson Water                                                                                             |
| Tucson food desert current areas                                           | Areas of the City that experience food<br>desert conditions or geographically<br>isolated location where access to<br>healthy, affordable food is absent or<br>limited.                                                                      | Bao and Tong 2017                                                                                        |

## SUPPLY METHOD: rainwater harvesting potential



Remote sensing and GIS techniques:



Roof Area Analysis



Roof Slope and Material Analysis



C. Crosson, D. Tong, Y. Zhang, Q. Zhong

### **DEMAND METHOD:** water use estimation OUTDOOR WATER USE ESTIMATION Lidar Data



|    | Vegetation type              |
|----|------------------------------|
|    | Contiguous area as turf      |
|    | Forbs and shrubs             |
|    | Large shrubs and small trees |
| )' | Medium trees                 |
|    | Large trees                  |

=mean density of each vegetation area 3)Microclimate Factor =Hillshade analysis

 $T = (A^{*}(ETL/IE))^{*}CE^{*}0.6233$ 

T = total water consumption

KL = landscape coefficient; KL = ks\*kd\*kmc

ETO = reference evapotranspiration in July; ETO = 7.9

ETL = project specific evapotranspiration; ETL = ETO\*KL

CE = Controller Efficiency; CE = 1

### METHOD: water independence systems model



Courtney Crosson

# RESULTS: all residential + irrigation demand

Analyzed 10 years (2007-2016) of

Daily rainfall (interpolated from nearest weather stations) for

1 mile x 1 mile township squares for

Average Indoor Residential + Outdoor Irrigation water demand.

For every 1,000 square feet of roof catchment,

a minimum storage capacity is needed to reach water independence in each township.



### RESULTS: all imported water demand

Analyzed 10 years (2007-2016) of

Daily rainfall (interpolated from nearest weather stations) for

1 mile x 1 mile township squares for

Average Indoor Residential + Outdoor Irrigation water demand with

RWH rebate adopters since 2012.

For every 1,000 square feet of roof catchment,

a minimum storage capacity is needed to reach water independence in each township.







### **RESULTS:** storage sizing

### **AVERAGE HOT TUB** 500-1,000 gallons







### REBATE PROGRAM ANALYSIS

### **Rebate Adoption Rate by Census Block Group**



# Thank you.

**Courtney Crosson** Assistant Professor, Architecture, University of Arizona ccrosson@email.arizona.edu

**Daoqin Tong** Associate Professor, Geographical Sciences and Urban Planning, Arizona State University daoqin.tong@asu.edu

Acknowledgments:

Qing Zhong (research assistant, UA Geography PhD student) Yinan Zhang (research assistant, UA Geography PhD student)

photograph:

John Edwards